TRANSACTIONS

OF THE

ASIATIC SOCIETY.

I.

An account of Experiments made in the Mrsore Country, in the year 1804, to investigate the effects of Terrestrial Refraction.

BY LIEUTENANT JOHN WARREN, Of H. M. 33d Regiment of Fuot.

INTRODUCTION.

Notwithstanding the various theories which have been advanced, at different times, to account for the effects of refraction*; and the numerous experiments which have been made by the most eminent philosophers of our times, with a view to discover some law by which its effects might be reduced to certain narrow limits, applicable to practice, nothing sufficiently satisfactory has yet occurred to set the question finally to rest.

The late Genaral Roy was the first among us, who availed himself of the favorable opportunity which his survey presented, to pay some minute at-

[^0]tention to entre effecter in tertestrial refraction. After
 the inivestigation, "Ias fatras therservice on which they were lefifigoyed confenibntly allowed "rbut as this
 tional information is to be gathered from their labours. Major Mudge has, indeed, made a number
 fallei id farlstiont df trisedxpectationw, that he promises, in lnis latest 'putilicitiont,' tó resume and' pay 'particular attention tetule sirbject to dind we haveino dopubt every teght ed explect senuethiag' very' viluable from that cquatterv."Bute nay not the laws def tefraction be so - Haterially ${ }^{\text {affected by }}$ gravity; and other unknown etalises, "to the vidy in different pattslof the globe, and "thatethebry fhich obtains in high woithernilatitudes
 which of late have been detected in the declinations.

[^1]Google
effect of the sort, and must evince the expediency of obtaining corresponding experiments in different latitudes; for, it is obvious, that even to ascertain any deviation in a system, perhaps too generalised, might be attended with incalculable advantages to science.

It must be owned, that: to "render experiments on terrestrial refraction pointedly useful, it would be necessary to shew how discoveries in this province might apply and bee extended to refraction in general. Hitherto on this recondite, subject, nothing which would immediately apply has reached my knowledge ; but as so much is still to be done whenever refraction is concerned. we may argue, that, in the present stage of our information, observations confined to terrestrial objects mayiba deemed sufficient.

It has been stated on experiments*, that the refractive power of the air is proportional to its density; and this is as its weight directly, and heat inversely. It would then appear, were our barometers and thermometers, sufficiently accurate, that by comparing them at any given time, the ratio of its density might, he hat orn Muth has been faund, on trial, that inithoupresantounimproved state of these instruments, changesy not wemy minute; in in the density of the atmosthiere, edcape ourthbtice, when a"reference is made

\cdots Now whatever share, heat, cold, or electricity, may have orbatater onthe deractive potvers of the air \dagger, their strive
 of beat and cold, on the refradfive powers of media, concludes, "that, " in alf, translucent substances, the focal distances diminish with the * heat, which diminution', he coicelved, is' owing to a change in the
effect is extremely inconsiderable, when compared with thit catsed by the bulk of water contained in dissolution rin' the catmosphere:' we may; therefore, in the present inquiry, consider them merely as 'agents', colthosing ande decómposing perpetually the, air ; and neglect the consideration of that inmediate effect which Smith and Euler have ascribed to them: 'Strowld wexten sacceed, in'ascertaining, with -any degree of zectutacy, the relative degree of mois'ture and drymess, at the 'different times of observa--tion, we shall (without neglecting dethet' considerations) lay more stress on these results, than on what - might be deduced sepdrately from observations of the -barometer and thermometer:

1: Before entering into the subject of experiments, it will be proper to preface a few words oh the motives which induced ! me to attend particularly. to the efFects of terrestrial reffaction, at the time that I did; as it will'afford'an opportenity of 'giving' an account of the data on which I chiefly proceeded.

Having' received directions - from' MAjot Lambrov **, to medsure a line neat' Bangulbre, 'to serve as a base of Jerification to the trigonotinetrical operations - Which 'were then carried on under his supetintendance, it biccurred to me, when this sêtrice "was"completed; theit so favolíabile an oppottanity was not likety to fecur, for entering' minutely' into the subject; for every possible means شad been'taken, to insure as atctifate a measurement as codild be effected : autd this lithe, togethen' with the elevation of one of $\because \quad \therefore \quad \therefore \quad \frac{11}{7}$
" refractive power of the substance itself; which probably increases
" by leat, and diminishes by cold,
But ihis applise chitefy to hardmeda, suctio as glass lenses, \&c. \&c. and máy be deéned (for the present) too inconsiderable to require particular notice, where air is the medium.
*Whose ássistănt I thén wás.
its extremities above the pther, (assertained in the course of the measurement) afforded, eyery pecessary datum to proceed on in this inyestigation,

As the detailed account, of the aboprpeptioned operation will appear at full length in Mayom La mpran's reports, and cannat with propriety pe giyen in this paper, I hopec that its. heitp: kyのw : to form a part of the trigonometrical pperations, cayticed on ip the peninsula of India, wili appenr asspficient, pledge of its accuragy.

ACCQUNT OF INSTRUMENTS:

The elevations and depressions were, taken, with the great theodolite, used by Major Lambton, for carrying on his series of primary triangles acioss the peninsula., This, instrument, having been formerly described by himself, need not be amy fiuther particularised.! The angles were innariably: waken with the micrometer in the focus of the telesegipe. $:$....

A barometer and thermometer were also procured*;
 hygrometer was, likely. to, deprive mas of what; I considefed : tof she, any essemtion imemapa iof investiga-
 ment cyas eves: applied to a sinnilar purpose) when

 sula, and which he thought was likely to aṇswer for an instrument of this sort \dagger.
 the company's datutalist'. The' 'hempómeter, one of Fahrenheit's division.
t The beards of the wild oats have been used in England for a similar purpose (see Hutton's Dictionary, art. Hygrometer).

Although I understand it to be this gentleman's intention to give an account of his experiments on these fibres to the public; yet, as his official calls prevented him from going minutely into the subject, at the period when I had occasion for an hygrometer, I was under the necessity of anticipating his intended investigation ; a and the experiments detailed in the appendix will' sheiw, that after an ample trial, the beards of the Panimooloo grass were found perfectly competent to the construction of an hygrometer. Three of these instruments were therefore constructed, and the mean of their readings noticed in the annexed tables,

> KXPLANATIQN, OF, THE FABLES::

The detail of experiments on the effects 'of terrestrial refraction, together with 'the immediate results deduced flom them, "appear in these tables, " under the appropriate coldumis "and a reference to them will best explain their arrangements.

It is however necessary to explain the meaning of certain mark's, which appéar at varldits pláces under the figures, and which have been adopted both for the sake of perspiouity'and brovityz:..n in :". . :
 ber of observations, the prevailing agreement between the motions of the bygrometes, and the variations, which occirred in the observed angles of elevation and deprestipifin

This beingia, pored, quadr intenesting fact (of which I had stihn hroped eqeasont werbe convinced, after I
 was desirous to draw, the attention on this coincidence, and with this view the marks alluded to were affixed.

Taking it for granted (as perhaps the present experiments will be deemed to allow) that where the moisture of the atmosphere is greatest, the refraction at that moment is also greatest (and vice, persa) wherever, in the annexed tables, the observation rigorously agrees with this theory, the mark ((§) is placed underneath*; where the coincidence of moisture and refraction is not absolately exact the approximation is pointed out hy a cross to shelving, by the number of its bars, how near it comes to perfect consisteucy.

With a view do draw the atentian still closer to the effects of moisture on refraction, two columns of differences, which were kept at the time of obser-
 relates tof the angles being marked, t, gicgordipg as these have, beem measuread greater or Cessit At ithe t wo nearest opservatigns and ant of the contempra-
 cording as the eftmosphefe. Hag fhaned chema a moister to a drier state, and vice versa:

 vations are compared separately, neglecting those taken in the midgle of the day ; fopt thefeg friqhythe great, gyifion ybich then disturbs tie atmosplare inus nece earily levery imperfect. The

 ture to refration; for it is to be observeditizety (x) theq, the weather is perfectly clear of rainy clouds) the refriction is is sever so inconsiderable as in the heat of noon, when the sun slines brightest, and when

 at that hour that the eevafons of tre M nitapum frequently bring

 then prevailing.
the shortest way was to mark with an asterisk (*) those cases where it had failed; and by inspecting: the tables, it will appear that the number of these is comparatively small.

The quantity of refraction, as entered in the appropriate columns, has been computed, according to those respective cases of depression or elevation, founded on reasonings too generally known to require any minute explanation.

It will only be necessary to state, that, with regard to the measured line, the formula $r=\frac{1}{8} A-D+a^{*}$ has been used in preference to that of $r=\frac{A-\left(D+D^{2}\right)}{D}$, for the obvious reason, that a greater reliance was to be placed on the perpendicular depression, obtained during the process of measurement, than on corresponding angular depressions, taken at the S. end of the base line, even though an equal number of obr servations had been taken at each end.

The refraction, affecting the elevation of the Muntapum \dagger, was necessarily computed by means of the elevations and depressions, taken at both places respectively, $r=\frac{A-(D-E)}{2}$ being the appropriate formula, where E expresses the elevation, and is less than D,

An example of each will suffice to render the subject perfectly clear.

* Where $r=$ Refraction.
$\frac{1}{2} A=$ One half the contained arc.
$D=$ The greater depression.
$D^{\prime}=$ The less depression.
And $a=$ The angle subtended by the perpendicular depression of S. end of measured line.
\dagger A small stene building, on a very conspicuous rising ground, about four miles N. of Bargelore.

EXAMPLE I.

The length of the measured line (Banswary and Beygoor) being converted into an arc of a great circla, gives $6^{\prime} 34,{ }^{\prime \prime} 67=A^{*}$.

Again, the depression of the south extremity of the line (near Beygoor) below the level of the north. ern one, is 39.7 feet, and using the proportion of radius to tangent, we have for the angle which it subtends $3^{\prime} 25 .{ }^{\prime \prime} 75=a$.

Lastly, on the 7 th of August, at $6^{\text {n. }} \cdot 39^{\prime}$ A. M. the depression of the foot of the flag-staff near Beygoor, was observed at Banswary, 6' $42^{\prime \prime} 66$.

But the height of the observer's eye above the ground was 5.67 feet (that of the instrument) which to reduce to the ground, will require $29^{\prime \prime} \cdot 39$ to subtract : consequently, the corrected depression will be $6^{1} 13^{\prime \prime} .27=D$ (the quantity entered in the tables). Whence

$$
\begin{aligned}
& \frac{1}{2} A=3^{\prime} \quad 17^{\prime \prime} \quad 34 \\
& +a=3 \quad 25 \quad 75 \\
& \begin{array}{r}
-\begin{array}{rrr}
6 & 43 & 09 \\
-D_{n} 6 & 13 & 27 \\
\hline r= & 29 & 82 \\
\hline
\end{array}
\end{array}
\end{aligned}
$$

The refraction entered in the tables.

[^2]
EXAMPLE 11.

At the same hour, the top of the flag-staff was observed $4^{\prime} 37 .{ }^{\prime \prime} 32$; which, corrected for the height of the instrument, as above, gives the depression $4^{\prime} 07^{\prime \prime} 93=D$. Again, the length of the flag-staff being 94 feet, this subtracted from 39.7 , leaves the perpendicular depression below the line of the level 15. 7 feet; and the angle which it subtends $=1^{\prime} 21^{\prime \prime}$ $86=a$.

Hence we have,

$\frac{1}{4} A^{\prime \prime} \mathbf{s}^{\prime}$	$17^{\prime \prime}$	34
$+a=1$	21	36
4	38	70
$-D=4$	7	93
$r=0$	30	77

The refraction entered in the tablessom

$$
\begin{aligned}
& \text { EXAMPLE III. }
\end{aligned}
$$

1st. The distance from the Nextremity of the line (Banswary) to the Muntapup is 26397 , 3 , which , converted into an arc of a great circle, is $418^{\prime \prime} 7=A$:

2d. Again, the eleyation of the Muntapum was taken at Bansioary (on the same day 8' $17^{\prime \prime}$ A. M.) $9^{\prime} 21^{\prime \prime} 84$, and this corrected for the height' of the instrument (by adding $44^{\prime \prime} 43$) makes the elevation

3d. Lastly, in the beginring of Augrast daring the afternoon, 'being at' the cMruntapun, the depressibin of N.end of line was observed, on a mean of four obser
vations, to be $15^{\prime} 19^{\prime \prime} 5$, and the instrument (in the Muntapum) being 8, 5 feet above the ground, we have to subtract $1^{\prime} 6^{\prime \prime} 59$, which reduces the depression to $14^{\prime} 12^{\prime \prime} 91=D$, a constant quantity in computing the third coiumn of refraction.

Hence we have,

$\begin{aligned} D & =14^{\prime} \\ -E & =10 \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \cdot 91 \\ & 06 \end{aligned}$
- 4	0664
$A=4$	187
2) 0	1206
$r=$	$06 \quad 03$

The refraction entered in the tables.
The absolute degree of moisture was deduced as. follows:

As I knew of no standard, by which I might set the hygrometer, when I was about observing, the least degree of moisture noticed during the day was assumed as zero. This arrangement had this advantage, that the refraction and moisture had a similar direction, and their coincidence met the eye more easily.

The column which shews the absolute density of the atmosphere was computed by this formula:

$$
D=\left(B^{2 \prime}-B^{\prime}\right) \times \frac{9600 d}{0600} \times \frac{\square}{1-\frac{n}{43 S}} \text { founded on rea- }
$$

[^3]sonings sufficiently known. An example, however, may not be deemed superfluous.

EXAMPLE.

The lowest degree to which the barometer descended during the course of these experiments, was 26. 85 inches $=B$, when the temperature also least of all was 69°. These two quantities are used as constant in the computations.

Now, on the 7th of August, at $6^{\text {n. }} 39^{\prime}$ A. M. the barometer was oberved to be at $\quad 27=B$
from which deduct $2685=B^{\prime}$
there remains, . $015=B-B$,
Again, the thermometer at the same time was 75°
from which deduct 69
and we have
$6=n$; and as no difference of temperature was noticed in the atmosphere and mercury, the same quantity (6) will also be expressed by d.

Hence it is that having found, $B-B=0.15 ; \frac{9600-d}{9600}=0.99, \& \mathrm{c} . ;$ and $\frac{435-n}{435}=0$. 98 , \&c. we have $0.15 \times 0.99 \times 0.98=0.145530$; which to reduce in terms of \boldsymbol{B} (the least density) we have $\frac{8 \dot{\theta} 85}{0.148530}=\frac{1}{184}$ the increase of density.

Lastly, to obtain an expression in absolute numbers, we have, as $26.85: 26.85+\frac{1}{184}:: 1000: 1000$. 209, the quantity entered in the tables.

The remaining columns are sufficiently explicit to require no explanation.

inaccuracy, 2 refult equally detective has endued. Thefe ubfervations have been preferved, as an inllance of the very fimall quantity of retraction, prevailing, at the time when they were taken.

REMARKS ON THE RESULTS.

1st. The most remarkable fact, which calls for our attention, in the resulth of the present experiments, is the almost invariable coincidence of the increase of refraction with that of moisture; which will appear still more forcibly, if we consider the results of the following eight observations, all taken between 10 and 12 o'clock, P. M. on different nights, when I was engaged in observing the eastern elongation of the polar star ; the depression of the S. extremity of the line being taken by means of a referring lamp.

Days.	Depressions.	Refraction.			
Augt.					
7	$5 \prime$	$17^{\prime \prime}$	33	1^{\prime}	$25^{\prime \prime}$
10	5	36	24	1	6
85					
11	5	40	18	1	2
91					
12	5	49	64	0	53
13	5	51	21	0	51
14	5	54	36	0	48
15	72				
15	5	23	63	1	19
16	5	40	97	1	2

- Mean refraction $1^{\prime} 1^{1 \prime} 38$.

On comparing the hygrometers, as they stood at the time of these observations, with their position when last noticed in the day time, it was found that they had revolved, on a mean, 840° in the direction of moisture. Now, the mean refraction of 55 observations, noticed in the tables, is $29^{\prime \prime} 74$; and we have seen that of the 8 observations taken at night (which, from the stillness of the air, may be deemed to balance a superior number) to be $1^{\prime} 1^{\prime \prime} 38$. Hence, it will appear, that the latter is something more than double the former.

2d. We shall next advert to the comparative quan-
tity of refraction, which seems to have affected the observations of the different objects referred to in the tables; and here, it is perhaps worthy of notice, that out of 49 contemporaneous observations, of the top and foot of the flag-staff, at the S. extremity of the line, the refraction attending those of the foot are 36 repeated times less than those of the top; and that, in the 13 remaining ones, where the contrary occurs, the excess is seldom above $2^{\prime \prime}$ of refraction, and frequently below unity ${ }^{*}$. As this circumstance is in opposition to the general theory, "that the lower the object, the greater the refraction," should the same circumstance occur again, in future experiments, it will be worth while to inquire, whether the rays, when passing through the atmosphere below the line of the level, may not be refracted differently from what they are when passing above it. This may perhaps be thought better than a mere conjecture, if it be recollected, that Mr. Bouguer, (whilst employed in measuring a degree of the meridian in South America, and observing on the summit of the Cordeliers) noticed a sudden increase of refraction, when he could view the stars below the line of the level.

3d. With regard to any attempt tourards estimating the effects of terrestrial refraction, by an assumed ratio to the contained arc, as has been hitherto the practice; without entering into any discussion of the subject, I shall only observe, that if, in the foregoing experiments, we go by the observations taken in the day time, we shall have (considering the foot of flag-staff, and preserving the same notation) $r=\frac{1}{13.27}$;

[^4]and if we take those by night, it will be $r=\frac{1}{6.42}$ of the contained arc, from which we can collect nothing.
"1: 4th! ' Phave now only to add a few words on the compailaty've density of the air,' at the different times of obsersationh, 'sitch as entered in' the tables; and the evidetit waht bf convectibn; Between its changes and those iat the tepraction; from which we may infer, that inthbugh In northern elimates (where the mercury will tise and fall several'inches in one day) observatibfis of thte'barometer' and thermometer may be attended'to writh advantage, on the contrary, in tropical countries, where (as appears in the present experiments) the variations of the mercury are hardly discernibléw, those instruments will prove perfectly in efficient. ${ }^{\prime}$.
1...1 ;
: c.al. $\therefore \therefore$, \because, APPENDIX:

An accoint of Experiments on the fibres or beards of the Panimooloo grass ; containing olso an account of the construction of the hygrometers, used in the preceding Hopertiments:

$$
\text { utroltin icori } \because \text { : at. e.ر }
$$

is Before - 1 propeedstagiven agcount of the experi-
 competeniey ofothe beatds of the. Panimonloa grass, to
 a short despription of, the, plems itself, or (since a botaicical account of it is not here intended) of that part Rf $_{\text {f the }}$ the plant which was, used in the construction

 utfor sirthethitad minuaf cirange 0.53. At Banswary, during the fime of attending to the present experiments (that is about twelye days) the greatest change was 0.2 : the latter place being 2970. feet above the level of theapa.
of the hygrometers, consulted in the preceding expe.riments om nefraction:

The Panimoaloo grass; : which grows chiefly on -mountaims, anad, is woll known to the natives, from its beards, eaxily catching and adhering to their clothes, . produces a kind of ear, somewhat resembling that of wheat. Its seed vessels shoot out long fibres, of a hardy textures which entwist one with the other from left to right, so as to resemble, when in .that atate, a diminutivelcooix Tope.: 1ow: ::
\therefore Theste fibres, or beards, are the part of ithe plant used in tharconstructien of the hygrometers, and - conoequently deserve partisulanomiqes $i=$

Each fibie shoots out, ince sthaigh line; mearly to the length of an inch, freme the:serdivesoel to which it adheres; then tapers off, in curls, to a very fine end, so that the former part of it can alone be used

When ricwed: throughena magaifying thanit apprears to bo made sp, like arrape, in !brbad atroids; tewisted
 i (contrary to its effect ona ropef) araignardualty unfolded, and cause the motion of whidn ladzaided myself.

The twists, in the straight part of the stem, are from 5 to 7 in number; and these, as I have found iby experiments, nearly mark the,number of revolutions, of which, the fiame is is susceptibled byy the appli-

When dissected, the stem was found to be made up
 divided, and twisted round each other, until they were united in a commanstalk, at tha seed vessel at one end, and above the first curl at the other. :"

This construction readily explains why it should be easily affected by either moisture or dryness, but does not evince that heat, or other changes in the ambient air, might. not likewise operate upon it in the same direction. The following. experiments satis-. fied me, however, that moisture alone unfolded the stem.

EXPERIMENT 1.

Having fixed a stem, about an inch long, with six twists in it, on a piece of wax, a slit straw. was fastened at its upper end, by way of index: the whole was then placed clear of any motion of the air, in such a position as the nature of the experiments required; and a graduated circle of pasteboard was so placed about it, as to indicate the number of revolutions and degrees which the index went over.

Then, on placing my hand within an inch of the stem, the index generally moved from 5° to 10° of the circle, from left to right; and as motion in this direction was. invariably the consequence of moisture, it was probable (but still it remained to be proved) that the efflucia arising from perspiration principally affected it in this case.

EXPERIMENT II.

By breathing violently on the stem, I generally brought the index round from 70° to 90° in the same direction; and it would go back to its original place as soon as let free.

This was a syufficient proof of its great sensibility; but to make sure whether moisture or heat caused it to move in the two preceding cases, I had recourse to the following:
Vol. IX.

EXPERMMENTHÍ

I lirst applied at ret-hot bar of iron, as close to the stem as could be contrived withbut burning it, which moved it uniformly from right to left.

Again, having prepared another stem; I applied the steam of hot water, issuing from the spout of a tea-kettle; which caused it to move, with great violence, several revolutions from right to left: which was a sufficient proof, that heat acted on this grass onky in as much as it deprived it of its moisture.

I then procecded to ascertain, whether the stem was, anyunay mogularly affectéd by the changes in the atmospheie ; appointion which every thing depended. With this view I made up three hygrometers, on the following construction :

Three stalks, were taken, of the sapme length and number of twists, and, being fixed at one end into a piece of wax, with an index (as above described) the whole was fixed at the brittom of so many strong tin boxes, about $2 \frac{1}{2}$ inches deep, on the edge of which was placed a moveable broad pasteboard circle, graduated every 5°, and divided in the common way of $360^{\circ \%}$. These three hygrometers were then placed together, and observed, for two successive days, at every hour of the day, from 7 oclock in the morning to 8 in the eyening; noticing at the same time both the barometer and thermometer, as the annexed tabfes vinill shew.

- This graduation will, I trustsiagpear pleffeclly suficient, when it is considered, that the nere effltvia ayising from petspiratipn moved the index 88 or ios, 78 upove nentipned

Table, shewing the comparative rate of going of three Hygrometers.

N. B. In this table Zero is to be taken between the signs + and --

It may, howeyer, be, proper to mention, that notwithstanding the great regularity which appears to prevail between the rates of going of these hygrometers, wheñer the atmosphere was uncommonly moist, the expuisite senslbilyty on' the stem required to be checkedd; for, as it mould, sometimes, during, a heavy showêr, revolye, a yhgle revpliution, it was not to be expected, that the three instruments would
 was therefore fastened ${ }^{n}$ eteach end ${ }^{2}$ of the mdex, loaded with a thin plate of lead, hanging loose' on the bottom of the box, so as to be dragged by the straw as it went round. Hy these means the instru-

Applitadion heat; 160 determine the compass of

 close to the stem as could be done, without setting fire to the apparatus; on which the index refofved, 2 revolutions and 105°, from right to left whep it
 affectied itino lionger in that: direction, afit whs

The heated bar beivg to recede, and became quiescent again (that is in its natural position) after having returned 290°.

But the three hygronieters, whose rate of going is
 2d4 towards it; and therefore this quantity is to be

Whepce it will appear, that since tha index had moved, by'the application of heat,', , ${ }^{\prime \prime} \quad{ }^{\prime 2} 2+105=825^{\circ}$ and that, by cooling, it' onlly recowered $1+134=494$ it followisg that the stoma by, beingiden: prived of ita, radical mpistute, llost a

Application of Moisture,

As soon as the index of the same stem gave signs of proceeding regularly with the hygrometers, a hair
 stem, when it revolved $6+295^{\circ}$ from left to right, and then remained quiescent. On the pencil being withdrawn, the index bedatr to receded add resumed the
 Mijty? juorltirn

 rouytio duringothe interval of 1 this experiments these had jmpved, $135^{\circ} ;$ in the same direction withe that
 subtracted.

$6+165$

 extreme moisture, the index had revolved; $6+295^{\circ}$

Hence, it will appear, that this process, $6+165$ affected the fibres of the stem by-

The thermometer, at the beginning of this operation, was 77°; and at the end 79°.

From the above experiments, it will appear, that, since by the application extreme heat (procuring extreme dryness) the index had revolved from right to left, ${ }^{R}+105^{\circ}$ and, by the application of extreme moisture,
from left to right, $\cdot . . \quad . \quad$. $6+295$
it follows, that the sum of these two quantities, viz.
$=9+40$
is the compass of the stem.
This result evinces, that the mean state of the atmosphere does not correspond, nor can it on any oczcasion, with the mean of the power of this instrument *.

A second stem having been selected, and the same process, as above related, repeated; it moved by extreme heat ${ }^{\mathrm{R}} \mathrm{2}+290^{\circ}$, and, by extreme moisture, R. $8+320^{\circ}$; so that the compass of this fibre was R. $11+250^{\circ}$; which exceeded that of the fermer by R. $2+210$; but, on examining it closer, after the operation, it was found that, although taken of the same length, it contained one twist more than the former; which accounts for its greater compass.

EXPERIMENT VI.
 Application of Steam.

Three stems having been selected, and being fixed as usual, the steam of boiting water, issuing from

[^5]the, spout of a tea-kettle; was applied to pne of them; when it moved, from left .to right \rfloor with violent convulsive motions, (so rapid as hardly to admit of counting them) $6 \frac{1}{1}$ revolutions; the $2 \mathrm{~d}, 6$; and the 3d, 6 ; when they remaimed quiescepty: $\because:$

Now, we have seen above (exp. IV.).that a stem, of this length, and number of twists, revolved in that case $6+300^{\circ}$; and, in the present, taearly $6+180$ (on a mean of three). The application of steam, therefore, if we cdnsider the small difference of the two results, may be conceived to have affected the stem, only in as much as it moistened it.
Seyeral oither experiments were also tried, but being of the same nature as the foregoipg and the results nearly similar, they need not be particularized.

$$
\begin{aligned}
& \text { : " } 1 \text {, fifis } \\
& \text { sismite to wes: wity }
\end{aligned}
$$


```
Fh7, |
```


[^0]: - Particularly by De Carties, Leibnitz, the two Bernodillis, and lastly by Sir Isaac Newton, whose hypothesis, grounded on the laws of attraction, now generally obtains among physical writers.

 Vol. IX.

[^1]: P. Major Lambion, in a postscript to one of his late reports to goveriment, has this obscrvation. "We find here, that different star! *give very different latitudes affer benig cortected fär aberration. -3E natation, \&ec.er (At Trivandeporming (the latitude of that station by \$5 Aldelaran vas $37^{\circ} 444^{\circ} 52^{\prime \prime} 59$. The tatitude by Regulus was " $11^{\circ} 44^{\prime} 47^{\prime \prime} 34$, and the latitude by a Orionis, $11^{\circ} 44^{\prime} 40^{\prime \prime} 91$. I had
 " made observations by the same three starsat Pauidree station'; where
 " those hy Regulus and aOrionis were often interrupted on account of

 "c yations have been set asidfen they serve sufficieintly to prove that the
 " declinationt, as laid down ih Europe, aie iffeghlar hert,' and this
 ${ }^{4}$ may probably arise from the uneertainty we-labour under with re-
 " spect to the laws of refraction; and in consequence of eqrivg in
 "c that, the differgace, of the corrected zenith distatices of two stars

 "" the sque stars will give in thislatitude. "t am hovéver," hàzarding
 "a an opinion but as Itutend beng more saffisfled as to the fact, I
 "" hope I shall be able to say more on the subject hereafter."

[^2]: * The horizontal length of the measured line is 39799 , 31 feet ; and when reduced to the level of the sea, $=39793,7$. This length thas been used, in this particular case, to obtaia the contained arc ; because the tables, by means of which the operatiou was performed; were calculated to that distapice from the centre of the earth.

[^3]: barometer.at the time of observatign, \boldsymbol{B} ' the state of the same wheu lowest of all, n the difference of temperature in the air, and d the differesce of temperature in the mercury.

[^4]: - The mean difference of refraction, between the top of the flagstaff and the Muntapum, (on 38 contemperaneous ebservations), is $16^{\prime \prime} .44$; and that between the top, of , flag, and Myuptapum is. $22^{\prime \prime} .51$, where the order is inverted by $6^{\prime \prime} .07$: and if the top and foot of flag-staff be compared, in an equal and contemporancous number of observations, the mean of their difference is $6^{\prime \prime}$. 08 likewise is the inverse order.

[^5]: - The stem, which was used for this experiment, was afterwards compared, when made up, with other hygrometers; and it did pot appear to have lost of its activity, by this process.

